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The Space Mobile Network (SMN) is an architectural framework that will allow for 
quicker, more efficient and more easily available space communications services, providing 
user spacecraft with an experience similar to that of terrestrial mobile network users. While 
previous papers have described SMN concept using examples of users in low-Earth orbit, the 
framework can also be applied beyond the near-Earth environment. 

This paper details how SMN concepts such as user-initiated services, which will enable 
users to request access to high-performance link resources in response to real-time science or 
operational events, would be applied in and beyond the near-Earth regime. Specifically, the 
paper explores the application of user-initiated services to direct-to-Earth (DTE), relay, and 
DTE/relay hybrid scenarios in near-Earth, lunar, martian and other space regimes. 

I. Introduction 
 NASA has introduced a framework, the Space Mobile Network (or SMN) [1][2], for a space communications and 
navigation architecture. SMN involves a set of architectural ideas that will allow for automated, more efficient and 
more easily available communications services, providing user spacecraft with increased network performance 
supportive of dynamic and autonomous mission scenarios. Users will be able to request communications services as 
needed from a network of diverse providers, including government and commercial providers. In this automatic and 
more accommodating system, user platforms could request services directly to tailor to their real-time needs; thus, 
SMN offers autonomous variable data collection without requiring pre-scheduled, manual requests, enabling users to 
obtain higher or lower data rates as needed. SMN also allows for improved availability and mitigation of delays in 
service provision by taking into account specific latency requirements.  
 While previous papers describing SMN concepts and implementation have typically demonstrated the ideas using 
case examples of users in low-Earth orbit (LEO), the concept is not restricted to LEO users and could be applied 
beyond LEO. This paper will describe SMN application scenarios for users at the Moon, the Sun-Earth Lagrange 
points and Mars, and will propose examples of how to implement those concepts. The concepts will include support 
through both direct-to-Earth links and space relays. This paper will also discuss how missions moving from beyond 
LEO will be able to continue under the same operations concepts, though implementation solutions may be different 
for the different scenarios. 
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II. Space Mobile Network Concepts 

Figure 1 illustrates the key features of the Space Mobile Network. A significant difference of this view from the 
historical NASA space communications view is the depiction of the network as a “network cloud” with access points. 
This depiction has been common for terrestrial networks for some time, but the networks supporting robotic and 
human space exploration have continued to mainly be viewed and operated as point-to-point link providers. This view 
implies the ability to route or forward data between any two end points with connectivity to the network. In terrestrial 
networks, this functionality is provided by the ubiquitous Internet Protocol (IP) and its suite of associated protocols. 
Though the IP suite works in some space applications, the dependence on full end-to-end connectivity for data delivery 
and prevalence of “chatty” two-way support protocols prohibits its use for all space scenarios [3]. Delay/disruption-
tolerant networking (DTN), specifically the Bundle Protocol (BP), has been developed to provide the benefits of 
networking in space (and other challenging) environments [4]. BP provides network-layer functionality using a store-
and-forward approach, providing for storage at intermediate nodes when the next hop is unavailable. 

As the evolution of the terrestrial internet has demonstrated, the standardization of network and link-layer protocols 
allows a build-up of infrastructure through the peering of provider systems. The SMN framework continues this 
evolution by leveraging IP and DTN for the network-layer standards and by leveraging commercial and CCSDS 
standards for the link- and physical-layer standards for space applications. The infrastructure to provide SMN services 
to future space users is expected to be comprised of global government and commercial systems. These systems, either 
ground stations or relay spacecraft, would provide access points to the larger network. 

The terrestrial mobile network user is accustomed to having continual access to the network. Providers strive to 
provide coverage to all users at availability and quality-of-service levels high enough to attract and maintain 
customers. There are significant differences, though, between the terrestrial mobile network user and the initial SMN 
user. Most notable are the SMN user locations, user terminal limitations and the user’s willingness to wait for full data 
delivery. High-availability links are a feature of the SMN, but due to the challenges involved in providing service at 
locations such as deep space or planetary surfaces, continuous availability is not always feasible. The SMN’s high-
availability links are optimized for coverage and availability, which typically limits the performance with respect to 
data rates and link capacity. A common approach to increasing availability is to implement multiple access systems 
that can provide links to multiple users. Multiple access may be provided through time, frequency or code division. A 
user’s time slice, carrier frequency or code may be pre-provisioned such that a user can immediately receive service 
or a multiple-access link acquisition process may occur first. The Tracking and Data Relay Satellite System’s (TDRSS) 
Demand Access System is an example of the former [5] and the CCSDS Proximity-1 Protocol (Prox-1) is an example 

Figure 1 - Space Mobile Network Key Features 
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of the latter [6]. Terrestrial mobile network systems are able to economically “over-provision” the area to allow all 
users to find an available link, except in extreme cases such as emergencies. These systems also maintain continuous 
control-channel links that can always locate users and assign parameters. This is a continuous power drain and link 
requirement on both the user and provider systems that is not acceptable for most spacecraft. 

Space links optimized for availability will likely have traded performance in other areas. High-gain systems that 
will support higher data rates or reduce the user’s system gain requirements are generally implemented with larger 
apertures with narrower beam widths and/or high-gain amplifiers. The costs measured in relay size, weight and power, 
or in ground station implementation and operations costs, are high, limiting deployment opportunities. Thus, these 
high-performance links become shared resources. Fortunately, many space missions have enough onboard storage and 
few stringent latency requirements that allow them to wait until the service is available. High-performance links 
ranging from X-band to Ka-band in radio frequency (RF) and now expanding to optical links are scheduled days to 
weeks in advance; this guarantees link availability in time to meet mission requirements, but leads to inefficiencies in 
link utilization and an inability for more rapid call-up of a high-performance link to support an unplanned science 
event or other occasion. 

In recognition of the desire to have a more responsive method to provide high-performance links and network 
services, SMN introduced the concept of user-initiated services (UIS). UIS is a class of service acquisition processes 
in which the end user originates the service request. This differs from the current methods used for acquisition of 
services by allowing the service acquisition process to be carried out by standardized “machine-to-machine” 
communications over space links. These requests may extend beyond link access requests to requests for end-to-end 
data delivery [7]. UIS will enable a user platform to request services over a signaling channel embedded within any 
links available to the user. The high-availability links provide the most available path for UIS to request services from 
the network. Since most space missions and networks are unable to support an always-connected control channel due 
to onboard power limitations and pointing and coverage constraints, UIS solutions specific to various SMN scenarios 
are under development. 

III. Service Acquisition via User-Initiated Services 
 Space communications operations can be described as occurring in two phases: service acquisition and service 
execution. Current space communications service acquisition processes are characterized by pre-planned service 
requests negotiated among user missions and provider network operators weeks in advance by “human-in-the-loop” 
systems. These requests are typically for point-to-point services and, therefore, space link resource-specific. This 
reduces the ability of the provider network to allocate service requests among space link resources according to optimal 
prevailing conditions or other criteria. In contrast, terrestrial wireless network providers implement all of the control 
data flows preceding service execution autonomously and hidden from end users, resulting in the delivery of user 
service data, such as delivering a text message to a friend or streaming internet video.    
 UIS automates current processes for space communications service acquisition using a request-response design 
pattern, with the service request generated by the user [8]. The data contents of the request message may vary based 
on user mission compatibility constraints, degree of platform autonomy or other considerations. However, a key 
distinction from current service acquisition processes is that a UIS request may be service-oriented as opposed to link 
resource-specific. For example, a user may specify a request to “deliver 25 gigabytes of data from the mission platform 
to the science operations center within two hours,” or “get as much data as possible off my platform as soon as possible 
(to avoid overwriting the on-board data storage), and get it delivered to the science operations center within six hours.” 
Requests specified in these terms allow the provider network flexibility to optimize allocation of the request across 
the set of link and network resources that satisfy the user mission service and link parameter constraints, which may 
be provided by government, university or commercial resources operating as a federated network. 
 A key architectural principle for realizing service-orientated requests in terrestrial networks involves the separation 
of concerns pertaining to network signaling and control data flows, which enable autonomous monitoring and control 
of resources, from those of the user data flows, which traverse the paths orchestrated by the signaling and control 
processes [9]. UIS is an emerging class of space communications service acquisition processes implemented through 
signaling and control protocols. In the SMN framework, signaling and control data flows will typically occur via high-
availability space links. However, high-performance space links optimized for user service data flows may also carry 
control data.  
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 Under the UIS framework, the service provider pre-provisions a signaling channel to support the necessary hand-
shaking process between the provider and any users wishing to acquire service. Once a user has secured service 
commitment from the provider, the actual communications of user data will take place during the service execution 
phase on a data channel. Service acquisition by definition always precedes service execution, and the delay between 
the two processes is determined by the scheduling agreement reached between the users and the provider during the 
service acquisition process. Users with existing service on any data channel may use it to simultaneously initiate a 
UIS process to acquire additional service in the future. UIS protocol facilitates the exchange of a user’s request and 
the confirmation of provisioning of resources. Therefore, it is a service management application-layer protocol at the 
provider-user interface. This process must be common to all service domains in terms of procedure and messaging 
content in order to integrate management and operations across all elements of a federated network. However, how 
UIS messages are delivered across the signaling channel may vary depending on the operational environment.  

 Under the UIS framework, a user will initiate a service request by sending a request message (REQ) to the provider 
over either a signaling channel or an existing data channel. A request can convey a specific desired service 
configuration or a range of acceptable parameters in terms of time, duration, data rate, coding, etc. In the latter case, 
the provider may narrow down the list of options when granting service. Upon receipt of a REQ message, the provider 
will determine, per network management decision, whether to grant the user’s request. The request can be granted as 
is, granted with a more restricted parameter set, denied implicitly by lack of response and therefore result in a user 
time-out, or denied explicitly by issuing a negative acknowledgement (NAK). The provider’s response can be issued 
over the signaling channel or via an existing data channel. A UIS service acquisition process is nominally a two-way 
handshake (positive ACK) process with user time-out. Each user must receive a confirmation from the provider within 
a time-out period to proceed to service execution. The provider may also have the option to explicitly cancel a prior 
grant to de-conflict with late-arriving, higher-priority requests. Furthermore, the provider may release/cancel a 
provisioned resource upon determination that service has not been utilized for a certain period of time after the 
beginning of the service execution phase. A one-way handshake process may be used in cases of high communications 
delays with a high likelihood of a granted request. In rare circumstances, a one-way handshake process might be 

Figure 2. General UIS service acquisition process using both the signaling channel as well as the data channel 
for conducting the UIS handshaking process.  
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considered to support off-nominal events, like a spacecraft emergency. In such a scenario, a high-detection-
probability, low-false-alarm signaling mechanism is typically used, and the user assumes the provider will correctly 
receive its request and grant service without further confirmation.  
 The specific channels available and UIS process and protocols will differ as dictated by communications 
constraints in different scenarios and environments. Wherever possible, UIS protocol messages and processes can be 
supported over different links. For example, the same UIS handshaking process and messages can be supported over 
a TDRSS demand-access channel or a Proximity-1 hailing channel, with the same messages carried over the different 
physical and link layers. 
 The following sections provide examples of how UIS could be implemented within different scenarios. 

IV. Direct-to-Earth (DTE) Scenarios 

A. Low-Earth Orbit (LEO) DTE 
 Direct-to-Earth communications operations in the low-Earth orbit (LEO) regime are typically characterized by 
long periods with no communications access due to geometrical line-of-sight constraints between ground assets and 
mission platforms. Many ground link resources are concentrated near the Earth’s polar regions to support sun-
synchronous and other polar orbits common to weather and other Earth-observing satellites. Due to phase differences 
between typical LEO orbital periods and the rotational speed of the Earth, access to ground link resources for missions 
in lower inclination orbits is less frequent. When ground stations are in view, there are still limitations to how many 
missions may be supported simultaneously. However, DTE link resources, such as ground-based omni-directional or 
electronically steerable phased arrays, may enable more responsive DTE communications and higher availability. 
 In the absence of high-availability communications links, LEO missions must implement sufficient on-board 
autonomy to sense and respond to scientific or engineering events of interest that require responsiveness on time scales 
less than the greater of the expected maximum pre-scheduled inter-link access time or network service acquisition and 
execution time. Examples of such on-board autonomy may include increasing instrument data sampling rates in 
response to a transient solar flare or changing spacecraft state into a safe mode if an engineering parameter exceeds 
its pre-defined limit. Currently, systems and operations concepts must be designed to accommodate this increase in 
data volume without the ability to acquire more high-performance links in a timely fashion.  
 Two possible scenarios involving UIS and DTE links are described. In both scenarios, a scientific or engineering 
event precipitating the need for service acquisition occurs at some point between pre-planned, high-performance 
service events. The first scenario, depicted in Figure 3, involves ground-based, high-gain link resources only. In this 
scenario, a UIS request for future, high-performance link services is inserted into a pre-scheduled service channel, 
assuming the user needs cannot be fully satisfied during this contact. The request for future services should be 
dispositioned and a response provided to the user platform within the contact access window.   
 

 
Figure 3. UIS request for Future DTE High-performance Link Access during a Pre-Scheduled DTE Contact 
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 The second scenario, depicted in Figure 4, involves use of higher-availability ground link resources, such as omni-
directional or electronically steered phased arrays, in order to request access to higher-performance, high-gain link 
resources. 
 

 
Figure 4. UIS Request for DTE High-Performance Link Access Using Higher-Availability Ground Link 
Resource 

 
 If possible, the service request could be granted within the same contact. The utility of this scenario is greatly 
enhanced by adaptive link technologies, such as variable modulation, coding and data rates, and DTN. For example, 
a typical LEO access window is constrained by the line of sight between the ground link resources and mission 
platform, and it may last ten minutes. Within that window, the range between the platform and ground link resource 
may vary by an order of magnitude. Adaptive link technologies would enable higher data rates as the range decreases. 
For a service request with a given data volume, this reduces the time required for service execution, which then forms 
a deadline constraint on the preceding high-availability service acquisition process. DTN protocols ensure reliable 
data delivery despite intermittent link availability [4]. This has three main benefits. First, the network-layer 
functionality allows the platform to determine where data should be sent when it gets to the ground station without 
any a priori knowledge at the ground station, and the store-and-forward nature of DTN provides automated rate 
buffering for any rate mismatches or disconnections over the end-to-end data delivery path. Second, it allows for a 
relaxation of constraints on link performance requirements because data delivery reliability is handled at the 
networking layer instead of at the link layer or application (file) layer. Third, the data from the mission platform is 
fractionated into bundles, which are generally smaller in data volume as compared to other common space protocol 
data units. These benefits combine to increase the quantity of viable access windows. From the UIS perspective, a 
scenario involving higher-availability ground link resources combined with adaptive link and DTN technologies may 
significantly improve both the responsiveness and efficiency of the space communications network. 
 If the service request cannot be granted during the same contact, the UIS service acquisition process could still be 
completed by scheduling a new or modified contact to follow. This subsequent contact could again be provided by 
any provider’s asset if it were part of a peering or federated service infrastructure.  

B. Deep-Space DTE 
 For deep-space communications, the UIS framework can be supported by an explicit signaling channel 
implemented via a beaconing system, or via an opportunistic multiple spacecraft per aperture (O-MSPA) technology 
[10]. The beacon approach, shown in Figure 5, is particularly suitable for missions on long cruise or during extended 
periods of inactivity such that it is more economical to use a low-complexity beacon signal that can be detected reliably 
on the ground without utilizing the 34-meter or 70-meter antennas. A preliminary beaconing concept has been tested 
as early as 1999 with the Deep Space-1 (DS-1) spacecraft. [11]. Due to the robustness of the beacon system, several 
deep-space missions (e.g. the Mars Science Laboratory and Juno) began utilizing a limited set of distinct beacon 
frequencies tones during critical entry, descent, and landing and orbit-insertion phases to indicate the spacecraft’s 
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operational states. For UIS, however, a message-oriented process is envisioned using sequences of tone “alphabet” to 
encode the UIS service request and confirmation messages. While all beaconing in deep space has been one-way only 
so far, an uplink beacon, when feasible, can be added to complete the two-way handshake. For assets deployed in the 
proximity of a high-coverage area such as the Mars region, where multiple spacecraft are tracked on a daily basis, O-
MSPA and multiple uplink per antenna (MUPA) technologies [12] can provide suitable downlink as well as uplink 
signaling channels for a UIS service acquisition process. The exact signaling format on the link layer and waveform 
could again be a simple tone-based alphabet or CCSDS-formatted telemetry; depending on the resource availability, 
UIS messages could be captured and processed either in the close-loop receiver with timely frame/packet content 
extraction and delivery to network management, or be recorded in the open-loop recorder and post-processed. Both 
approaches could be used depending on the desired turn-around time and ground resource availability. The common 
UIS service acquisition protocol is advantageous for missions operating across multiple space regimes (such as in the 
near-Earth regime immediately after launch followed by the lunar or deep-space regime) because the same operational 
procedure applies in terms of how communications services are acquired. 

 

 
Figure 5. UIS Framework for Deep-Space Multiple Access Communications with Beacon 

C. Beyond LEO/Near Earth 
 As mentioned in the previous section, with respect to supporting deep-space missions in the early-cruise phase, 
missions beyond LEO and out to the Moon and to the Sun-Earth L1 and L2 Lagrange points can be supported with 
shared apertures at sizes of 18 meters or less. The smallest antenna size that can still maintain the desired links would 
be preferred since that would have the widest beam width and therefore, the most coverage area for a particular 
distance from Earth. For example, all users on the near side of the Moon or in lunar orbit could be supported with 
MSPA and engage UIS to request a high-performance link at any time. The distinct advantage at these distances is 
that the delays of no more than a few seconds would allow two-way UIS protocols to finalize a service acquisition 
protocol quickly and potentially bring up a high-performance link immediately. 
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V.  Relay Scenarios 

A.  Earth Relay 
Previous papers have extensively described the Earth relay scenario combined with the hybrid Earth relay/DTE 

scenario [7]. Earth relays are able to provide full orbital coverage and could feasibly provide continuously available 
links. There is also the greater likelihood of multiple providers among international and commercial partners that 
could provide the total infrastructure. One provider’s system may provide the high-availability link used for the UIS 
service acquisition process that acquires a different provider’s high-performance link. For example, a high-availability 
RF link may be used to schedule access on a different relay’s optical link. Similar to the TDRSS Demand Access 
System, high-availability links could be pre-provisioned with enough simultaneous user capacity to allow each user’s 
high-availability link service execution to begin immediately without any per-use service acquisition process.   

B. Mars Relay  
The current baseline of the Mars Relay Network (MRN) is based on pre-scheduled operations. However, due to 

the flexibility that is already designed into the primary link-layer protocol, the CCSDS Proximity-1 Space Link, 
channel synchronization and coding, and physical-layer protocol suite (Prox-1), the MRN can be extended easily to 
support UIS service acquisition. Prox-1 uses a multiple-access link acquisition process, or “hailing process,” to 
establish a link. Figure 6 shows UIS operations utilizing the same hailing channel as its signaling channel. In this 
scenario, the user (the surface assets) will initiate a hailing sequence to establish a temporary connection with the 
provider (the relay orbiter) in order to exchange service request and handshake messages. This initial exchange on the 
hailing channel completes the UIS service acquisition phase. That phase is followed immediately, if available, or later 
by the separate Prox-1 hailing process, triggered from either the orbiter or the surface asset to kick-off the service 
execution phase and establish a data channel. The application-layer UIS process remains essentially the same except 
that the signaling mechanism is enabled by the Prox-1 hailing process. If a user desires to acquire additional service 
during an existing data session, it can send the UIS message over the Prox-1 data channel, as well. This operational 
scenario is completely in agreement with the general UIS framework described in earlier sections.   

 
Figure 6. UIS Framework for Multiple-Access Proximity Relay Networks 

V.  DTE Relay Hybrids 

A. LEO 
 Generally speaking, high-performance DTE links impose fewer burdens on the user platform than high-
performance geosynchronous relay links. This is due to the smaller distance between the platform and link resource 
and the common use of un-steered, ISO-gain antennas on the platform as opposed to range distances of several tens 
of thousands of kilometers and gimbal-pointed antennas on the platform typically required for high-performance 
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geosynchronous links. DTE communications architectures are anticipated to have lower responsiveness due to less 
access to ground link resources in typical LEO orbits as compared to geosynchronous Earth relay scenarios with global 
coverage.   
 However, more responsive DTE mission concepts could be enabled by high-availability links provided by space 
relays without the increased user burden imposed by high-performance relay links. A hybrid SMN infrastructure 
combining the availability of relays with the high performance of DTE links would capitalize on the best attributes of 
both. It is already common for missions to have low-rate relay capabilities for health and safety, so the UIS process 
would take place over this existing capability. UIS would allow a user to request and receive service from whichever 
capable assets are available, and DTN would allow data to flow to the desired destination no matter which access point 
was used to connect to the larger network. 
 In this scenario, the UIS service acquisition process occurs mainly over the high-availability, possibly pre-
provisioned relay links, while the high-performance links are DTE or, if capable of meeting the service request, relay 
links. This scenario is depicted in Figure 7 below. 
 

 
Figure 7. High-Performance DTE Service Acquired Through UIS over High-Availability Relay Service 

B. Distributed Space Systems 
An interesting SMN case is the Distributed Space System (DSS), in which multiple spacecraft operate within a 

single link coverage area. For the DSS, communications between an individual spacecraft and the provider system 
may function through another node within the DSS, which acts as the SMN access point. The DSS node could also 
expand beyond being solely a data access point to providing the link for the UIS signaling traffic. In this way, the DSS 
node functions as a relay in a hybrid relay/DTE system. Individual nodes may be able to schedule up DTE support or 
better relay support via this node of the same DSS.  

For gateway nodes, those that bridge the spacecraft constellation with the ground network over DTE links, a beacon 
system or MSPA/MUPA can support UIS operations with the ground infrastructure. For much larger constellations 
with many assets spread over hundreds of thousands of kilometers or more, DTE/direct-from-Earth links will most 
likely be the primary communications system, and the same MSPA/MUPA approaches can apply very effectively. If 
the node functioning as the connection to Earth is being supported on a high-performance DTE link, more complex 
UIS messaging may be used than what is possible over a beacon or lower-rate multiple-access scheme. Once again, 
DTN provides the increased flexibility for link selection and intermediate data storage, enabling satisfied user requests 
with a sparser infrastructure.   

C. Lunar 
The plans for “long-term exploration and utilization” of the Moon include the build-up of multiple spacecraft 

landing on and orbiting the Moon [13]. This is expected to be a collaborative effort combining human and robotic 
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spacecraft provided by NASA, along with commercial and international partners. The scenarios described in this paper 
combine for this scenario. Individual missions could be supported with DTE links from the lunar vicinity, and these 
missions could also become relays for other missions as part of a DSS. The inclusion of network-layer protocols for 
all data flows will initially facilitate the use of any link as a possible path toward data delivery. The addition of UIS 
concepts will provide the means for a scalable infrastructure that can be responsive to the wide variety of potential 
missions expected. 

VI. Conclusion 

Through the recasting of the space communications architecture as a mobile network with different access points, 
the Space Mobile Network concept strives to enable mission operations concepts to remain consistent even as the 
missions move between the environments near Earth out to deep space. In general, a mission could perform low-rate 
data transfers and network service requests over high-availability links, higher-rate transfers over high-performance 
links that can be brought up more responsively to service requests, and networked communications to allow data flows 
between any two nodes connected to the same network. The specifics for how those links and service requests are 
performed will differ between environments, but that can be treated as the equivalent of “lower-layer” differences 
such that mission applications can be developed with defined interfaces to these underlying functions. 

Key next steps are to continue to refine the concepts and terminology, define functional and performance 
requirements for target environments and operational concepts, and develop, model, and demonstrate protocols and 
implementations. Demonstrations via small satellites [14] or other test platforms, such as the SCaN Testbed [15] will 
also serve to identify requirements and opportunities. SMN also drives new requirements for spacecraft position, 
navigation and timing (PNT) systems. Other next steps include continued efforts to address meeting those new 
requirements and the developing new SMN-enabled PNT capabilities [16]. The components can be implemented 
separately and build upon each other, allowing for a phased deployment of the Space Mobile Network. 
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